Monday, July 20, 2020
Cohomology: Mayers-Vietoris sequence.
Define the following inclusion maps
\begin{eqnarray}
i_u:U \rightarrow M, i_u(p) = p \\
i_v:V \rightarrow M, i_v(p) = p \\
j_U:U \cup V \rightarrow U, j_u(p) = p \\
j_V:U \cup V \rightarrow V,j_v(p) = p
\end{eqnarray}
These inclusion map $i_U(p)=p$ from $U$ to $M$ and similar map $i_v(q)=q$ from $V$ to $M$ etc.,
Based on these inclusion maps one can define pull back maps of differentials
\begin{equation}
i^{*}_U:\Omega^{k}(M) \rightarrow \Omega^{k}(U)
\end{equation}
Similarly one can define a pull back for $i_V$
\begin{equation}
i^{*}_V:\Omega^{k}(M) \rightarrow \Omega^{k}(V)
\end{equation}
Similar pull back maps are defined for $j_U,j_v$.
\begin{eqnarray}
j^*_U:\Omega^k(U \cup V) \rightarrow \Omega^k(U) \\
j^*_V:\Omega^k(U \cup V) \rightarrow \Omega^k(V)
\end{eqnarray}
By restricting to $U$ and to $V$, we get a homorphism of vector spaces
\begin{equation}
i:\Omega^{k}(M) \rightarrow \Omega^k(U) \oplus \Omega^k(V)
\end{equation}
defined via
\begin{equation}
\sigma \rightarrow (i^{*}_U\sigma,i^{*}_V\sigma)
\end{equation}
Using this, define the difference map,
\begin{equation}
j:\Omega^k(U) \oplus \Omega^k(V) \rightarrow \Omega^k(U \cap V)
\end{equation}
by $j(\omega,\tau)=\tau-\omega$.
This map indicates what to do with common vectors that belong to both $U$ and $V$. Similar maps are used in Finite dimensional vector spaces to prove dimensionality theorem when $U,V$ are subspaces whose intersection is non-empty.
Here $\tau,\omega$ are pull backs maps shown before.
\begin{eqnarray}
\omega = j^*_U\omega \\
\tau = j^*_v \tau
\end{eqnarray}
$j$ is a zero map when $U \cup V = \emptyset$.
Proposition
For each integer $k \geq 0$, the sequence
\begin{equation}
0 \rightarrow \Omega^k(M) \xrightarrow{i} \Omega^k(U) \oplus \Omega^k(V) \xrightarrow{j} \Omega(U \cap V) \rightarrow 0
\end{equation}
is exact.
Proof:
To show that this exact sequence, we need to show at each node image of previous function to this node is same as kernel from this node to next node.
We will start with first node - $\Omega^k(M)$.
$0$ vector maps every function to $0$ in the $\Omega^k(M)$ which is in kernel of $i$. Hence, $im\;(0\rightarrow \Omega^k(M))=ker\;i$.
To prove exactness at $\Omega^k(U \cup V)$, we need to show that $j$ is surjective or onto as next maps takes everything to zero. Thus kernel of next map is all of $\Omega^k(U \cap V)$ which is range of $j$.
We are already given $j$ map in the previous section. This map, together with a very nice partitions of unity, helps us to establish the onto of $j$ map.
say $\omega \in \Omega^k(U \cap V)$. Let $p_U,p_v$ be functions that form partitions of unity. Define
\begin{eqnarray}
p_U\omega = \begin{cases}
p_v \omega \text{ when }, & x \in U \cap V \\
0 \text{ otherwise },& x \in U - (U \cap V)
\end{cases} \\
p_V\omega = \begin{cases}
p_U \omega \text{ when }, & x \in U \cap U \\
0 \text{ otherwise },& x \in V - (U \cap V)
\end{cases}
\end{eqnarray}
The niceness of partition of unity allows the following to happen.
\begin{equation}
j(-p_u\omega,p_v\omega)=p_v\omega+p_u\omega=\omega \text{ on } U \cap V
\end{equation}
This shows that $j$ is onto and from the fact the next function sends everything to $0$, we have proved that this is a short exact sequence.
Sunday, July 19, 2020
Cohomolgy-Long exact sequence
- Cochain map $\phi:H^k(A)\rightarrow H^k(B)$ induced cohomology map
\begin{equation}
\phi^{*}:H^k(A) \rightarrow H^k(B)
\end{equation} - For short exact sequence of cochain complexes \begin{equation}
0 \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
\end{equation}
Connecting homomorphism map is
\begin{equation}
d^{*}:H^k(\mathcal{C}) \rightarrow H^{k+1}(\mathcal{A})
\end{equation} - Then the short exact sequence of cochain complexes
\begin{equation}
0 \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
\end{equation}
gives rise to long exact sequence in cohomology.
\begin{equation}
\cdots H^{k-1}(\mathcal{C}) \xrightarrow{d^{*}} H^k(\mathcal{A}) \xrightarrow{i^{*}} H^k(\mathcal{B}) \xrightarrow{j^{*}} H^k(\mathcal{C}) \xrightarrow{d^{*}} H^{k+1}(\mathcal{A}) \cdots
\end{equation}
Saturday, July 18, 2020
Cohomology-Connecting homomorphisms
\begin{equation}
0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C} \rightarrow 0
\end{equation}
is ``short exact'' if $i,j$ are cochain maps and for each $k$
\begin{equation}
0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0
\end{equation}
is short exact sequence of vector spaces.
Based on above sequence, we can define yet another new map called ``connecting homomorphism'' map
Since $C$ maps all elements to $0$ and because this is an exact sequence, image of $j$ will be onto. This means there exists an element $b\in B^k$ such that $c=j(b)$.
Because connecting homomorphism gives above commuting diagram, $C^{k+1}$ can be reached via $d(j(b))$ and also via $j(d(b))$. That is,
\begin{equation}
d(j(b)) = j(d(b))
\end{equation}
However, $c=j(b)$. Then, $d(j(b))=d(c)=0$. Thus the element $db (\in B^{k+1}) \in ker\;j$.
d[c] = [a] \in H^{k+1}(A)
\end{equation}
Cohomology of Cochain complex
cochain map:
Between any two cochain complexes $\mathcal{A}, \mathcal{B}$ one can define a cochain map $\phi:\mathcal{A} \rightarrow \mathcal{B}$ - a collection of linear maps $\phi_k:A_k \rightarrow B_k$. If $d_1,d_2$ are corresponding differential operators for $\mathcal{A},\mathcal{B}$, drawing a commuting diagram shows
Friday, July 17, 2020
Vector spaces-First isomorphism theorem
Let $T:V \rightarrow W$ be a linear transformation between vector spaces $V$ and $W$.
Then, $\tau:T/ker(W) \rightarrow Im(W)$ induces an isomorphism given by $\tau(v+ker(T)) = T(v)$.
First we need to establish that if $v+ket(T)$ is replaced by $v'+ker(T)$ for $v,v'$ in the same coset ie $v-v' \in ker(T)$, then $T(v)=T(v')$. That is, we need to establish that above map is well defined.
Notice,
$T(v) = T( (v'-v)+v' ) = T(v-v')+T(v') = T(v')$
Then we need to establish that the map $\tau$ is a linear map.
That is, for $v,v' \in V$, we need to show that $\tau(v+ker(T) + v'+ker(T))=\tau(v+ker(T))+\
Indeed, $\tau(v+ker(T) + v'+ker(T)) = T(v+v'+ker(T)) =T(v)+T(v')=\tau(v+ker(T))+\
And
$\tau(\alpha (v+ker(T))) = \tau(\alpha v + \alpha ker(T) ) = T(\alpha v) = \alpha T(v) = \alpha \tau(v+ker(T))$.
Thus the map T/ker(W)$ is a linear map.
To prove isomorphism, we need to show that this map is one-one and onto.
For one-one, if $\tau(v+ker(T))=0$, need to show that $v+ker(T)=0$ which is a direct result of the observation that if $\tau(v+ker(T))=T(v)=0$, then $v \in ker(T)$.
For onto, just note any element of $im(T)$ can be written as $T(v)$ for some $v \in V$ and thus equal to $\tau(v+im(T))$.
Theorem (Universal mapping property for quotient spaces). Let $F$ be a field, $V,W$
vector spaces over $F$, $T : V → W$ a linear transformation, and $U \subset V$ a subspace.
If $U \subset ker(T)$, then there is a unique well-defined linear transformation
$\tau : V/U → W$ given by $\tau(v + U) = T(v)$.
Thursday, July 16, 2020
Cohomology-exact sequences-1
$A \xrightarrow{f(x)} B \xrightarrow{g(x)} C$
$A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$
$B/ker\;g \cong C$.
Wednesday, July 15, 2020
Cohomology product structures and ring structure.
- For a manifold $M$ of dimension $n$, the direct sum is $H^{*}(M) = \oplus_{k=1}^{n} H^{k}(M)$
- Thus $\omega \in H^{*}(M$, can be written as $\omega=\omega_0+\omega_1+\cdots+\omega_n$ where $\omega_{i} \in H^{i}(M)$.
- Product of differential forms defined on $H^{*}(M)$ gives $H^{*}(M)$ a ring structure - called "Cohomology ring".
- Since product of differential forms is anticommutative, the ring is anticommutative.
- Direct sum gives Cohomology ring a graded algebra structure.
- Thus, $H^{*}(M)$ is anticommutative graded ring.
Chain complexes on Hilbert spaces
Chain complexes are mathematical structures used extensively in algebraic topology, homological algebra, and other areas of mathematics. Th...
-
==Problem 1== Find the multiplication table for group with 3 elements and prove that it is unique. ==Solution== Clear that if \(e,a\) are t...
-
==Problem 2A== Find all components of matrix \(e^{i\alpha A}\) where \(A\) is \begin{equation} A = \begin{pmatrix} 0&&0&&1...