Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, July 27, 2016

Georgi Lie Algebras Chapter 2 Solutions



==Problem 2A==
Find all components of matrix eiαA where A is A=(001000100)

==Solution==
Simply exp will yield, (12(e(2iy)+1)e(iy)012(e(2iy)1)e(iy)01012(e(2iy)1)e(iy)012(e(2iy)+1)e(iy)) Then applying Demovire's theorem, one gets, (12(cos(2y)+isin(2y)+1)(cos(y)isin(y))012(cos(2y)+isin(2y)1)(cos(y)isin(y))01012(cos(2y)+isin(2y)1)(cos(y)isin(y))012(cos(2y)+isin(2y)+1)(cos(y)isin(y)))

==Problem 2B==
If [A,B]=B, calculate eiαABeiαA Using equation 2.44, and setting Y=Z, we get RHS=Xi[Z,X]12[Z,[Z,X]]+=Xi[X,Z]1/2[[X,Z],Z]+ Applying this to equation in our problem, eiαABeiαA=Biα[B,A]12α2[[B,A],A]+=B+iαB12α2[B,A]+=B+iαB12α2B+=Beiα

No comments:

Post a Comment

Chain complexes on Hilbert spaces

 Chain complexes are mathematical structures used extensively in algebraic topology, homological algebra, and other areas of mathematics. Th...