==Problem 2A==
Find all components of matrix eiαA where A is A=(001000100)
==Solution==
Simply exp will yield, (12(e(2iy)+1)e(−iy)012(e(2iy)−1)e(−iy)01012(e(2iy)−1)e(−iy)012(e(2iy)+1)e(−iy)) Then applying Demovire's theorem, one gets, (12(cos(2y)+isin(2y)+1)(cos(y)−isin(y))012(cos(2y)+isin(2y)−1)(cos(y)−isin(y))01012(cos(2y)+isin(2y)−1)(cos(y)−isin(y))012(cos(2y)+isin(2y)+1)(cos(y)−isin(y)))
==Problem 2B==
If [A,B]=B, calculate eiαABe−iαA Using equation 2.44, and setting Y=−Z, we get RHS=X−i[−Z,X]−12[−Z,[−Z,X]]+⋯=X−i[X,Z]−1/2[[X,Z],Z]+⋯ Applying this to equation in our problem, eiαABe−iαA=B−iα[B,A]−12α2[[B,A],A]+⋯=B+iαB−12α2[B,A]+⋯=B+iαB−12α2B+⋯=Be−iα
No comments:
Post a Comment