So far the following maps are defined.
- Cochain map $\phi:H^k(A)\rightarrow H^k(B)$ induced cohomology map
\begin{equation}
\phi^{*}:H^k(A) \rightarrow H^k(B)
\end{equation} - For short exact sequence of cochain complexes \begin{equation}
0 \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
\end{equation}
Connecting homomorphism map is
\begin{equation}
d^{*}:H^k(\mathcal{C}) \rightarrow H^{k+1}(\mathcal{A})
\end{equation} - Then the short exact sequence of cochain complexes
\begin{equation}
0 \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
\end{equation}
gives rise to long exact sequence in cohomology.
\begin{equation}
\cdots H^{k-1}(\mathcal{C}) \xrightarrow{d^{*}} H^k(\mathcal{A}) \xrightarrow{i^{*}} H^k(\mathcal{B}) \xrightarrow{j^{*}} H^k(\mathcal{C}) \xrightarrow{d^{*}} H^{k+1}(\mathcal{A}) \cdots
\end{equation}
No comments:
Post a Comment