Sunday, July 19, 2020

Cohomolgy-Long exact sequence

So far the following maps are defined.
  • Cochain map $\phi:H^k(A)\rightarrow H^k(B)$ induced cohomology map
    \begin{equation}
      \phi^{*}:H^k(A) \rightarrow H^k(B)
    \end{equation}
  • For short exact sequence of cochain complexes \begin{equation}
      0  \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
    \end{equation}
    Connecting homomorphism map is
    \begin{equation}
      d^{*}:H^k(\mathcal{C}) \rightarrow H^{k+1}(\mathcal{A})
    \end{equation}
  • Then the short exact sequence of cochain complexes
    \begin{equation}
      0  \rightarrow \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \rightarrow 0
    \end{equation}
    gives rise to long exact sequence in cohomology.
    \begin{equation}
     \cdots H^{k-1}(\mathcal{C}) \xrightarrow{d^{*}} H^k(\mathcal{A})  \xrightarrow{i^{*}} H^k(\mathcal{B}) \xrightarrow{j^{*}} H^k(\mathcal{C}) \xrightarrow{d^{*}} H^{k+1}(\mathcal{A}) \cdots
    \end{equation}

No comments:

Post a Comment

Hodge * Operator

  Basics of wedge products We know vector space has a dual space that consists of functionals. Similarly, if we have a tangent plane there i...