Sunday, March 31, 2024

Field Extension - Simple example

 Real numbers for a Field, so do complex numbers and rationals. What is deeply interesting is that we can construct several other fields based on an existing field. These are called Field extensions.

Standard example of such Field extension goes like this. Let $Q$ be a rational field. Consider polynomial $X^2 -2 \in Q$. Clearly roots of the this polynomial $X=\sqrt{2}$ and $X=-\sqrt{2}$ don't belong to $Q$ as there are irrationals.

One nice things we can do is to extend $Q$ by adding these roots to form a new field. Let's call it $Q(\sqrt{2})$. Now $Q(\sqrt{2})$ consists of roots of polynomials in $Q[X]$ whose roots involve $\sqrt{2}$. 

For example, a polynomial $

Elements: We can add any two elements and resulting element is still in

This setup allows for the exploration of linear algebra concepts within field extensions, including the basis, dimension, and linear transformations, offering a rich framework for understanding more complex algebraic structures.

Chain complexes on Hilbert spaces

 Chain complexes are mathematical structures used extensively in algebraic topology, homological algebra, and other areas of mathematics. Th...