Tests on differential forms:
Test 1: If ω is a differential form of odd dimension - say 3, then ω∧ω=0. This is the attempt to let Cadbra solve this wedge form.
Nakahara eqn 5.67a
Cadabra code:
-----------------
{a,b,c,l,m,n}::Indices.
{e^{a}, \omega^{a}_{b}}::DifferentialForm(degree=3);
Attached property DifferentialForm to [ea,ωab].
eq1 := \omega^{a}_{b} ^ \omega^{a}_{b};
0
Nice! Solves this. Test 2: Now we want to show explicitly - that is using numeric indices for q,r the following expression:
η∧ν=(−1)qrν∧η.
Cadabra code:
-----------------
def post_process(ex):
sort_product(ex)
canonicalise(ex)
collect_terms(ex)
{ \eta^{a}_{b}}::DifferentialForm(degree=3);
{ \nu^{a}_{b}}::DifferentialForm(degree=5);
Attached property DifferentialForm to ηab.
Attached property DifferentialForm to νab.
eq2 := \eta^{a}_{b} ^ \nu^{a}_{b}; eq3 := \nu^{a}_{b} ^ \eta^{a}_{b};
ηab∧νab
\eta^{a}_{b} ^ \nu^{a}_{b}
−ηab∧νab
-\eta^{a}_{b} ^ \nu^{a}_{b}
Cadabra code:
---------------
eq2 + eq3;
combine(_);
ηab∧νab−ηab∧νab
\eta^{a}_{b} ^ \nu^{a}_{b}-\eta^{a}_{b} ^ \nu^{a}_{b}
0
0
Exercise 5.15: Let ξ∈Ωq(M) and ω∈Ωr(M).
Show that d(ξ∧ω)=dξ∧ω+(−1)qrξ∧dω.
For simplicity, we shall set q=3 and r=5 - thus inducing a negative in the expression.
Using the following link is nice: https://cadabra.science/notebooks/exterior.html
Cadabra code:
-----------------
\xi::DifferentialForm(degree=3);
\omega::DifferentialForm(degree=5);
Attached property DifferentialForm to ξ.
Attached property DifferentialForm to ω.
Add definition of exterior derivative.
Cadabra code:
-----------------
d{#}::ExteriorDerivative;
d{#}::LaTeXForm("{\rm d}").
Attached property ExteriorDerivative to d#.
ext1 := d{ \xi ^ \omega };
d(ξ∧ω)
Cadabra code:
-----------------
d(\xi ^ \omega)
product_rule(_);
dξ∧ω−ξ∧dω
d(\xi) ^ \omega-\xi ^ d(\omega)
This demonstrates equation 5.69 in Nakahra for even and odd indices.