Thursday, July 28, 2016

Changing Font size on Blogger

Step 1: Login to Blogger.
Step 2: Click on Drop down as shown and select "Template"



Step 3: Click on Customize.



Step 4: Click on "Advanced"


Step 5: Select desired Font and Font Size.


Step 6: Click on "Apply to Blog" on top right hand side of the page to apply your settings.

Wednesday, July 27, 2016

Georgi Lie Algebras Chapter 2 Solutions



==Problem 2A==
Find all components of matrix \(e^{i\alpha A}\) where \(A\) is \begin{equation} A = \begin{pmatrix} 0&&0&&1 \\ 0&&0&&0 \\ 1&&0&&0 \end{pmatrix} \end{equation}

==Solution==
Simply exp will yield, \begin{equation} \left(\begin{array}{rrr} \frac{1}{2} \, {\left(e^{\left(2 i \, y\right)} + 1\right)} e^{\left(-i \, y\right)} & 0 & \frac{1}{2} \, {\left(e^{\left(2 i \, y\right)} - 1\right)} e^{\left(-i \, y\right)} \\ 0 & 1 & 0 \\ \frac{1}{2} \, {\left(e^{\left(2 i \, y\right)} - 1\right)} e^{\left(-i \, y\right)} & 0 & \frac{1}{2} \, {\left(e^{\left(2 i \, y\right)} + 1\right)} e^{\left(-i \, y\right)} \end{array}\right) \end{equation} Then applying Demovire's theorem, one gets, \begin{equation} \left(\begin{array}{rrr} \frac{1}{2} \, {\left(\cos\left(2 \, y\right) + i \, \sin\left(2 \, y\right) + 1\right)} {\left(\cos\left(y\right) - i \, \sin\left(y\right)\right)} & 0 & \frac{1}{2} \, {\left(\cos\left(2 \, y\right) + i \, \sin\left(2 \, y\right) - 1\right)} {\left(\cos\left(y\right) - i \, \sin\left(y\right)\right)} \\ 0 & 1 & 0 \\ \frac{1}{2} \, {\left(\cos\left(2 \, y\right) + i \, \sin\left(2 \, y\right) - 1\right)} {\left(\cos\left(y\right) - i \, \sin\left(y\right)\right)} & 0 & \frac{1}{2} \, {\left(\cos\left(2 \, y\right) + i \, \sin\left(2 \, y\right) + 1\right)} {\left(\cos\left(y\right) - i \, \sin\left(y\right)\right)} \end{array}\right) \end{equation}

==Problem 2B==
If \([A,B]=B\), calculate \begin{equation} e^{i\alpha A}B e^{-i\alpha A} \end{equation} Using equation $2.44$, and setting $Y=-Z$, we get \begin{align*} RHS=X-i[-Z,X]-\frac{1}{2}[-Z,[-Z,X]]+\cdots \\ &&=&& X-i[X,Z]-1/2[[X,Z],Z]+\cdots \end{align*} Applying this to equation in our problem, \begin{align*} e^{i\alpha A} B e^{-i \alpha A} = B - i\alpha[B,A]-\frac{1}{2}\alpha^2[[B,A],A]+\cdots \\ = B + i\alpha B - \frac{1}{2}\alpha^2[B,A]+\cdots \\ = B + i \alpha B - \frac{1}{2} \alpha^2B + \cdots \\ = B e^{-i \alpha} \end{align*}

Tuesday, July 26, 2016

How to configure blogger for MathJax

Step 1: Login to Blogger
Step 2: Select "Layout" from the dropdownlist.


Step 3:Click Edit in the Cross Column.

Step 4: Copy and paste the following code.

<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
      inlineMath: [ ['$','$'], ["\\(","\\)"] ],
      displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>


<script src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>

Step 5: Click Save.


Step 6: Start using LaTex in your blog. The minimal configuration as noted above won't support all features. Check out the MathJax documentation by clicking link - MathJax Docs
Step 7: Publish and Prosper!

Chain complexes on Hilbert spaces

 Chain complexes are mathematical structures used extensively in algebraic topology, homological algebra, and other areas of mathematics. Th...